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ABSTRACT
In the machine learning domain, machine learning frameworks
are predominantly written and maintained in NVIDIA® CUDA™
language. There have been attempts to port these frameworks
to OpenCL® , notably the ports of Ca�e framework by Gu et al;
Tschopp; and Engel; and of Torch framework by Perkins. The au-
thors of these frameworks found merging their work into the main-
stream framework challenging, and maintain their forks as separate
branches or repositories. CUDA-on-CL addresses this problem by
leaving the reference implementation entirely in NVIDIA CUDA,
both host-side and device-side, and providing a compiler and a
runtime component, so that any CUDA C++11 application can in
theory be compiled and run on any OpenCL 1.2 device. We use
Tensor�ow framework as a case-study, and demonstrate the ability
to run unary, binary and reduction Tensor�ow and Eigen kernels,
with no modi�cation to the original CUDA source-code.

Performance studies are undertaken, using the Tensor�ow ker-
nels. For bu�er sizes of 1MB or more, performance is comparable
between CUDA and CUDA-on-CL, across unary operations, binary
operations and single-axis reductions. Full reduction is around 14
times slower on CUDA-on-CL than on CUDA. We think this may be
because of the absence of the low-level hardware shfl operation.
The asymptotic time for zero bu�er sizes is double that of CUDA,
possibly because of the overhead of additional kernel boilerplate
needed to workaround limitations in the OpenCL 1.2 standard.

CCS CONCEPTS
• Computing methodologies → Parallel programming lan-
guages; • Software and its engineering → Compilers; Source
code generation;
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1 INTRODUCTION
In the machine learning community, high-performance machine
learning libraries are used to �t high-capacity mathematical models
to datasets, and enable predictions on previously unseen test data.
The nature of the high-capacity models places high demands on
the machine learning libraries in terms of runtime execution speed,
and available mathematical functionality. To achieve state of the art
results, the latest discrete GPUs are typically used, eg [13], although
this is not the only approach possible [7].

Amongst discrete GPUs, those produced by NVIDIA are among
the fastest available, and mainstream machine learning libraries,
such as Tensor�ow [1], Ca�e [11] or Torch [4], typically target
usage primarily on NVIDIA devices. Using hardware from other
vendors, such as AMD or Intel, is typically not easily possible,
because the core source-code is written using NVIDA® CUDA™
[12], which is NVIDIA-speci�c.

1.1 Source-code language
Attempts have been made to port the mainstream machine learning
libraries from NVIDIA CUDA to the portable GPGPU language
OpenCL [17]. Ca�e was ported by Engel [5]; by Gu et al [10];
and by Tschopp [18]. Torch was ported by Perkins [15]. In each
case, the OpenCL source-code was maintained as a separate fork,
evolving somewhat independently of the upstream NVIDIA CUDA
codebase. Upstream changes to the CUDA source-code need to
be painstakingly ported across to OpenCL. Similarly, innovations
within the OpenCL implementation cannot easily be merged into
upstream, but need to back-ported, into NVIDIA CUDA language.

Such an approach is high-maintenance. A more general solution
would be to maintain one single code-base, that can run on devices
from any vendor. For example, the code could be written only in
OpenCL. In practice, high-performance libraries must provide a
CUDA implementation, because the OpenCL ports run signi�cantly
slower on NVIDIA devices than the original CUDA versions. There-
fore, migrating the reference code-base from NVIDIA CUDA to
OpenCL is not achievable realistically at this time.

A more pragmatic solution could be to leave the existing code-
bases as-is, in NVIDIA CUDA, and to instead provide a compiler
and runtime, to run this code on non-NVIDIA devices. AMD’s HIP
compiler [2] uses this approach, for AMD devices. Such an approach
could be generalized to other vendors, on a vendor-by-vendor basis.
The approach theoretically o�ers high performance because each
hardware vendor can make optimal use of vendor-speci�c hardware
optimizations. However, to date, only AMD provide an NVIDIA
CUDA source-code compiler, and a more general approach might
be useful.

SYCL [16] implements much of the functionality of NVIDIA
CUDA, in a similar language. Modi�cations required to port from
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NVIDIA CUDA are fewer, compared to OpenCL. In addition, SYCL
is an open standard. However, NVIDIA CUDA code cannot be
compiled directly: host-side api calls to the NVIDIA CUDA API
need to be replaced by SYCL equivalents. On the device-side, API
calls, such as threadIdx.x, need to be migrated.

1.2 Communication with GPU Driver
SYCL standard provides a solution to reading NVIDIA CUDA source-
code. It does not address the question of how to provide the resulting
parse-tree, or bytecode, to the GPU driver. Two approaches are:

• convert the code into vendor-speci�c bytecode
• convert into SPIR[8], or SPIR-V[9], bytecode

AMD’s HIP employs the �rst approach, which is likely to give
excellent performance, but is vendor-speci�c.

SPIR and SPIR-V are open standards for providing bytecode
directly to a compatible GPU driver, in a cross-platform, portable
way. This is a general approach, whilst e�cient, and potentially
providing access to high-performance low-level optimizations. Two
implementations of SYCL using SPIR are Codeplay’s ComputeCpp
[3], and Keryell et al’s triSYCL implementation [6].

SPIR-V is a new standard, and driver support is just beginning.
ComputeCpp, using SPIR-1.2, supports AMD Fiji and Hawaii GPUs,
and Intel Gen 9 CPUs/GPUs (personal communication, 20 January
2017). An opportunity could exist, in the short-term, for a more
general approach.

1.3 NVIDIA CUDA API
In order to be able to run NVIDIA CUDA source-code unmodi�ed,
it is not su�cient to be able to compile the C++11 language. The
source-code contains calls to the NVIDIA CUDA API, on both the
host-side and the device-side. In addition, in the machine-learning
domain, extensive use is made by libraries of cuBLAS API. SYCL
does not provide a solution to this challenge. In a pure SYCL im-
plementation, one would need to migrate each of the CUDA API
calls to SYCL-speci�c API calls. An additional challenge with this is
that some NVIDIA CUDA functionality, such as GPU bu�er pointer
arithmetic, is not supported by either OpenCL or SPIR-V standards,
and a trivial migration, eg by updating function names, is not in
general possible.

Neither triSYCL, ComputeCpp, nor HIP address the issue of the
NVIDIA CUDA API: migrating the API needs to be handled by
modifying the original NVIDIA CUDA source-code.

2 CUDA-ON-CL
CUDA-on-CL has the following goals:

• Run NVIDIA CUDA source-code unchanged, both host-
side and device-side

• Portable across a broad range of devices
• Provide cuBLAS API

Therefore, CUDA-on-CL is implemented as follows:
• Uses an existing open-source CUDA parser - CLANG -

to parse the NVIDIA CUDA source-code �les into LLVM
bytecode

• Writes the device-side LLVM bytecode as OpenCL 1.2

Figure 1: CUDA-on-CL Architecture

• Expose an implementation of the NVIDA CUDA host-side
API

In the future, as SPIR-V support becomes more wide-spread, the
OpenCL 1.2 generation component can be dropped, and the LLVM
bytecode can be injected directly into the GPU drivers, as SPIR-V
bytecode.

CUDA-on-CL provides a partial implementation of the cuBLAS
API, using Nugteren’s CLBlast [14]. CLBlast is a portable C++11
implementation of BLAS for OpenCL.

On the host-side, a virtual memory management module is pro-
vided, to allow GPU bu�er pointer arithmetic. Across the host-
side/device-side boundary, kernel method parameters are modi�ed
and extended as required to handle limitations of OpenCL 1.2 stan-
dard. On the device-side, shims are provided as necessary to handle
any missing low-level hardware optimizations.

Thus, by comparison with the existing ecosystem, CUDA-on-CL:
• is very general, running theoretically on any OpenCL 1.2

device
• can compile and run NVIDIA CUDA source-code unchanged
• provides a partial implementation of cuBLAS API

Figure 1 provides a schematic of the CUDA-on-CL high-level
architecture.

Having presented the high-level challenges of CUDA-on-CL,
and how CUDA-on-CL solves these, let’s look at detailed, low-level
challenges.

2.1 Detailed Challenges
Some key challenges associated with compiling and running NVIDIA
CUDA source-code on OpenCL 1.2 devices are:

• Need to replace device-side CUDA calls, such as ThreadIdx.x
with OpenCL device-side calls, such as get_local_id(0)

• OpenCL 1.2 forbids pointer arithmetic on cl_mem bu�ers
• OpenCL 1.2 forbids passing structs by-value to kernels
• OpenCL 1.2 forbids passing pointers in structs to kernels
• OpenCL 1.2 requires all pointers to be explicitly labeled

with their address-space, ie global, local, or implicitly pri-
vate

• OpenCL 1.2 lacks many low-level device-side instructions
such as sh�

Conceptually, the solution to many of these challenges is similar:
• We control the source-code and /or bytecode on both the

host-side and the device-side



CUDA-on-CL IWOCL ’17, May 16-18, 2017, Toronto, Canada

• Therefore we are free to modify the code as we wish
In general each challenge is solvable, though there might be a

cost, in terms of CUDA-on-CL internal development time, and appli-
cation execution speed. We will describe the solution implemented
by CUDA-on-CL for four representative low-level challenges.

2.2 Pointer arithmetic
One of the challenges faced during the manual porting of Ca�e to
OpenCL was the use of host-side pointer o�sets. A single pointer
in NVIDIA CUDA represents both a GPU-allocated bu�er, and
an o�set into that bu�er. In OpenCL, two values are needed, one
to hold the o�set. This change needs to be threaded through all
methods and objects that process the pointer.

CUDA-on-CL handles this issue by implementing its own virtual
memory management. The pointer provided to host-code is not the
actual cl_mem bu�er pointer, but a virtual pointer. By comparing a
received virtual pointer with a table of allocated objects, CUDA-on-
CL deduces the underlying cl_mem object and the o�set.

2.3 Address space declarations
OpenCL requires all pointers to have their address-space statically
declared, ie global, local, or implicitly private. This requires walking
the execution path to determine the address-space of each pointer
and function parameter. In general, the address-space cannot be
determined prior to execution. Therefore the OpenCL generation
occurs at runtime. We note that each function might be called
multiple times, with di�erent combinations of parameter address-
spaces. Therefore, CUDA-on-CL clones each function, for each
required combination of address-space assignments, and assigning
appropriately mangled names.

2.4 Low-level hardware operations
Low-level hardware operations, such as shfl, are not available in
OpenCL. Therefore these are implemented via shims. Theoretically,
on hardware that provides an appropriate hardware level imple-
mentation, eg available via inline assembler in the case of NVIDIA,
or via OpenCL 2.0 sub-groups on certain other drivers, we could
conditionally substitute in a more performant implementation.

2.5 Kernel parameter structs containing
pointers

OpenCL forbids passing by-value structs containing global pointers
as kernel parameters. However, this is allowed by NVIDIA CUDA.
A solution implemented by CUDA-on-CL is to:

• clone such struct de�nitions into a struct with no pointers
• on the hostside, copy the values from the old struct to the

pointer-free struct
• pass the pointer-free struct into the kernel, along with the

pointers as separate kernel parameters
• on the kernel side, allocate a struct of the original type, copy

across the data from the pointer-free struct, and assign the
global pointer parameters to the struct

This produces quite lengthy boilerplate, however it only needs
to occur once per kernel launch.

Figure 2: Relative execution speed, using Tensor�ow

3 EXECUTION SPEED
A key question is, if we are generating OpenCL 1.2 code, which is
then being recompiled again, to what extent does this a�ect perfor-
mance? To provide a partial answer to this question, Tensor�ow
was compiled for OpenCL using CUDA-on-CL and various opera-
tions were executed. The operations are of three categories: unary
operations, binary operations, and reductions. The reductions are
further broken down into single-axis reductions, and full, two-axis,
reductions. Figure 2 shows the ratio of the CUDA-on-CL execution
speed to the CUDA implementation execution speed, for operations
taken from these categories. The code for these tests is available
at https://github.com/hughperkins/tensor�ow-cl/tree/tensor�ow-
cl/tensor�ow/stream_executor/cl/test . These tests are using Ten-
sor�ow 0.9, running on an NVIDIA K80 GPU.

We can see that for all of unary operations, binary operations,
and single-axis reduction, the performance of CUDA-on-CL and
CUDA is comparable. However, for the full, two-axis, reduction
performance of CUDA-on-CL is about 14 times slower than that
of CUDA. The performance equivalence for unary operations, bi-
nary operations, and single-axis reduction is comforting. The per-
formance of full reduction is hypothesized to be related to some
combination of weaker optimizations, and missing low-level hard-
ware operations. The NVIDIA nvcc compiler is highly optimized,
and contains several proprietary optimization routines which are
not publically available. As far as low-level hardware operations,
we note that the underlying Eigen implementation of reduction
uses the shfl operation, which is available via CUDA, but must be
shimmed in the OpenCL version. The shim for OpenCL 1.2 shfl
requires writing to and from shared memory, whereas the NVIDIA
hardware shfl implementation can directly rotate the values, at
the warp level.

An additional nuance is that these timings are for a single large
bu�er. We can vary the bu�er size, and examine the e�ect on per-
formance, and this is shown in Figure 3. Figure 3a shows the e�ect
of batch size for the unary op tanh. We can see that for batch sizes
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Figure 3: E�ect of batch size

of around 1MB or more, the execution time of CUDA and CUDA-
on-CL implementations of Tensor�ow are comparable. However,
for smaller batch sizes, we can see that the asymptotic zero batch
size limit for the CUDA-on-CL implementation is around twice as
high as that of CUDA: around 2 milliseconds, compared to around
1 millisecond, on this hardware. We hypothesize that this is a result
of the overhead of copying the by-value structs, containing global
pointers, at the start of each kernel.

Looking at the second chart, Figure 3b, this shows the e�ect
of batch size for full reduction. As noted earlier, full reduction is
around 14 times slower on CUDA-on-CL implementation than on
CUDA implementation, possibly because of the requirement to
use a shim to implement the low-level sh� operation. Similarly to
the unary op case, the asymptotic zero-sized bu�er sized overhead
is about twice for CUDA-on-CL compared to CUDA. In addition,
for larger batch sizes, the CUDA-on-CL version is consistently
around 14 times slower than CUDA, independent of batch size. This
suggests that this is caused by a fairly low-level operation, applied
to each data item, or to each data row. This is consistent with the
hypothesis that the disparity is the result of needing to use a shim
for the shfl low-level hardware operation.

4 CONCLUSION
NVIDIA CUDA cards are amongst the fastest, and migrating ma-
chine learning library core codebases away from NVIDIA CUDA,
to OpenCL, might not be achievable in the short-term. Khronos
SYCL standard improves the end-user developer experience for
non-CUDA cards. However, a pragmatic near-term solution might
be to leave the existing source-code in NVIDIA CUDA, and provide
compilers and runtimes, to run this code directly on non-NVIDIA
devices.

AMD’s HIP enables NVIDIA CUDA code to be compiled and
run on AMD cards, in alignment with this approach. CUDA-on-CL
extends this work, by enabling NVIDIA CUDA applications to run
on any OpenCL 1.2 compatible GPU.

Looking at runtime execution speed, using Tensor�ow: for unary
operations, binary operations, and single-axis reduction, the per-
formance of CUDA-on-CL is indistinguishable from that of CUDA,
when the batch-size is 1MB or more. Tensor�ow full reduction uses
the low-level hardware operations shfl, and runs 14 times more
slowly than native CUDA, on an NVIDIA K80 GPU. The overhead of
additional kernel boilerplate in the CUDA-on-CL kernels increases
the kernel launch time overhead from 1 millisecond, for native
CUDA, to 2 milliseconds, on this hardware.

We believe that CUDA-on-CL is a signi�cant step forward for
being able to run arbitrary machine learning libraries on non-CUDA
devices, and speci�cally on any OpenCL 1.2 compliant GPU.
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